Carboxylic acid-doped SBA-15 silica as a host for metallo-supramolecular coordination polymers.

نویسندگان

  • D Akcakayiran
  • D Mauder
  • C Hess
  • T K Sievers
  • D G Kurth
  • I Shenderovich
  • H-H Limbach
  • G H Findenegg
چکیده

The adsorption of a metallo-supramolecular coordination polymer (Fe-MEPE) in the cylindrical pores of SBA-15 silica with pure and carboxylic acid (CA) carrying pore walls has been studied. Fe-MEPE is an intrinsically stiff polycation formed by complexation of Fe(II)-acetate with an uncharged ditopic bis-terpyridine ligand. The adsorption affinity and kinetics of the Fe-MEPE chains is strongly enhanced when the pore walls are doped with CA, and when the pH of the aqueous medium or temperature is increased. The initial fast uptake is connected with a decrease of pH of the aqueous solution, indicating an ion-exchange mechanism. It is followed by a slower (presumably diffusion-controlled) further uptake. The maximum adsorbed amount of Fe-MEPE in the CA-doped material corresponds to a monolayer of Fe-MEPE chains disposed side-by-side along the pore walls. The stoichiometry of Fe-MEPE in the pores (determined by XPS) was found to be independent of the loading and similar to that of the starting material. The mean chain length of Fe-MEPE before and after embedding in the CA-doped matrix was studied by solid-state 15N NMR using partially 15N-labeled Fe-MEPE. It is shown that the average chain length of Fe-MEPE is reduced when the complex is incorporated in the pores.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups.

In this study, the mesoporous silica SBA-15 materials containing carboxylic acid groups were used as an effective support to synthesize Cu nanoparticles. Various Cu loading levels from 4% to 13% on SBA-15 catalysts produced an average particle size of 2.8 to 3.1 nm, regardless of the Cu content.

متن کامل

Synthesis and characterization of Pt nanoparticles with different morphologies in mesoporous silica SBA-15 for methanol oxidation reaction.

Mesoporous SBA-15 silica materials functionalized with and without carboxylic acid groups were used to effectively control the morphology of Pt crystals, and the materials thus obtained were applied to methanol oxidation reactions. The Pt particles aggregated to form long spheroids inside the channels in pure SBA-15. When carboxylic acid groups were utilized, the SBA-15(-COOH) material facilita...

متن کامل

A vapoluminescent Eu-based metallo-supramolecular polymer.

An Eu-based metallo-supramolecular polymer (polyEu) was prepared by self-assembly coordination polymerization. Unique vapoluminescence property of polyEu triggered by acid-base vapor was found and a photoluminescence display in switchable imaging by acid-base vapor was fabricated.

متن کامل

Post-assembly guest oxidation in a metallo-supramolecular host and structural rearrangement to a coordination polymer.

PTA hosted in a copper metallo-supramolecular triangle undergoes post-assembly oxidation to form PTAO in aerated solutions. The oxidation is triggered by selected co-solvents that also govern the formation of the final crystalline product leading to a discrete host-guest triangle {PTAO@[Cu(o-L)]3} or to a 1D coordination polymer {(PTAO)2@[Cu8][Cu2]}∞ containing a {Cu8} ring with a double hostin...

متن کامل

Self-assembled metallo-macrocycle based coordination polymers with unsymmetrical amide ligands.

A series of metallo-macrocyclic based coordination polymers has been prepared from flexible amide ligands N-6-[(3-pyridylmethylamino)carbonyl]-pyridine-2-carboxylic acid (L1-CH(3)) and N-6-[(4-pyridylmethylamino)carbonyl]-pyridine-2-carboxylic acid (L2-CH(3)). In all but one case, self-assembled dinuclear metallo-macrocyclic units form the basis of the polymeric structures, whereby discrete met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 112 46  شماره 

صفحات  -

تاریخ انتشار 2008